학술논문

Reduced graphene oxide/TiO2/NiFe2O4 nanocomposite as a stable photocatalyst and strong antibacterial agent
Document Type
article
Source
Sustainable Environment Research, Vol 33, Iss 1, Pp 1-16 (2023)
Subject
rGo/TiO2/NiFe2O4 nanocomposite
Methylene blue
Photocatalytic degradation
Antibacterial agent
Environmental technology. Sanitary engineering
TD1-1066
Language
English
ISSN
2468-2039
Abstract
Abstract In this study, we prepared reduced graphene oxide (rGO)/titanium dioxide (TiO2)/nickel ferrite (NiFe2O4) nanocomposites with different mass ratios of rGO, TiO2, and NiFe2O4 by a simple hydrothermal method. These nanocomposites were found to exhibit enhanced visible light harvesting, reduced electron–hole recombination, and improved magnetic properties compared to rGO, TiO2, and NiFe2O4. The study evaluated the photocatalytic and antibacterial activity of the nanocomposites, with particular emphasis on the GTN211 (with a mass ratio of 2:1:1 for rGO:TiO2:NiFe2O4) nanocomposite. The results showed that the GTN211 nanocomposite exhibited the best photocatalytic performance under both UV and visible light irradiation, achieving 95 and 89% degradation of Methylene Blue dye in 15 min, respectively. The study also investigated the photodegradation mechanism using various scavengers and found that holes were the main active species in the process. In addition to photocatalytic activity, the GTN211 nanocomposite also showed good antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria, with the minimum inhibitory concentration of 1 mg mL−1 for both bacteria and a minimum bactericidal concentration of 0.8 and 1 mg mL−1, respectively. Hence, the GTN211 nanocomposite has potential as a material for environmental remediation and biomedical applications. The combination of photocatalytic and antibacterial activity makes this material a promising candidate for a wide range of applications.