학술논문

Nanoscale Engineering of Inorganic Composite Scintillation Materials
Document Type
article
Source
Materials, Vol 14, Iss 17, p 4889 (2021)
Subject
compositional disorder
ceramics cerium
glass ceramics
inorganic composites
nano-engineering
scintillators
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
1996-1944
Abstract
This review article considers the latest developments in the field of inorganic scintillation materials. Modern trends in the improvement of inorganic scintillation materials are based on engineering their features at the nanoscale level. The essential challenges to the fundamental steps of the technology of inorganic glass, glass ceramics, and ceramic scintillation materials are discussed. The advantage of co-precipitation over the solid-state synthesis of the raw material compositions, particularly those which include high vapor components is described. Methods to improve the scintillation parameters of the glass to the level of single crystals are considered. The move to crystalline systems with the compositional disorder to improve their scintillation properties is justified both theoretically and practically. A benefit of the implementation of the discussed matters into the technology of well-known glass and crystalline scintillation materials is demonstrated.