학술논문

Granular piston-probing in microgravity: powder compression, from densification to jamming
Document Type
article
Source
npj Microgravity, Vol 8, Iss 1, Pp 1-12 (2022)
Subject
Biotechnology
TP248.13-248.65
Physiology
QP1-981
Language
English
ISSN
2373-8065
Abstract
Abstract The macroscopic response of granular solids is determined by the microscopic fabric of force chains, which, in turn, is intimately linked to the history of the solid. To query the influence of gravity on powder flow behavior, a granular material is subjected to compression by a piston in a closed container, on-ground and in microgravity (on parabolic flights). Results show that piston-probing densifies the packing, eventually leading to jamming of the material compressed by the piston, regardless of the gravitational environment. The onset of jamming is found to appear at lower packing fraction in microgravity ( $${\varphi }_{J}^{\mu -{{{\rm{g}}}}}=0.567\pm 0.014$$ φ J μ − g = 0.567 ± 0.014 ) than on-ground ( $${\varphi }_{J}^{{{{\rm{gnd}}}}}=0.579\pm 0.014$$ φ J gnd = 0.579 ± 0.014 ). We interpret these findings as the manifestation of a granular fabric altered by the gravitational force field: in absence of a secondary load (due to gravitational acceleration) to stimulate reorganization in a different direction to the major compression stress, the particles’ configuration becomes stable at lower density, as the particles have no external drive to promote reorganization into a denser packing. This is coupled with a change in interparticular force balance which takes place under low gravity, as cohesive interactions become predominant. We propose a combination of microscopic and continuum arguments to rationalize our results.