학술논문

Development of whole-cell catalyst system for sulfide biotreatment based on the engineered haloalkaliphilic bacterium
Document Type
article
Source
AMB Express, Vol 11, Iss 1, Pp 1-14 (2021)
Subject
Hydrogen sulfide treatment
Sulfide: quinone oxidoreductase
Haloalkaliphilic heterotrophic bacterium
Genetic modification
Whole-cell catalysis
Process optimization
Biotechnology
TP248.13-248.65
Microbiology
QR1-502
Language
English
ISSN
2191-0855
Abstract
Abstract Microorganisms play an essential role in sulfide removal. Alkaline absorption solution facilitates the sulfide’s dissolution and oxidative degradation, so haloalkaliphile is a prospective source for environmental-friendly and cost-effective biodesulfurization. In this research, 484 sulfide oxidation genes were identified from the metagenomes of the soda-saline lakes and a haloalkaliphilic heterotrophic bacterium Halomonas salifodinae IM328 (=CGMCC 22183) was isolated from the same habitat as the host for expression of a representative sequence. The genetic manipulation was successfully achieved through the conjugation transformation method, and sulfide: quinone oxidoreductase gene (sqr) was expressed via pBBR1MCS derivative plasmid. Furthermore, a whole-cell catalyst system was developed by using the engineered strain that exhibited a higher rate of sulfide oxidation under the optimal alkaline pH of 9.0. The whole-cell catalyst could be recycled six times to maintain the sulfide oxidation rates from 41.451 to 80.216 µmol·min−1·g−1 dry cell mass. To summarize, a whole-cell catalyst system based on the engineered haloalkaliphilic bacterium is potentiated to be applied in the sulfide treatment at a reduced cost.