학술논문

Charge identification of fragments produced in 16O beam interactions at 200 MeV/n and 400 MeV/n on C and C2H4 targets
Document Type
article
Source
Frontiers in Physics, Vol 11 (2024)
Subject
particle therapy
fragmentation
cross sections
nuclear emulsion detector
protons RBE
charge measurement
Physics
QC1-999
Language
English
ISSN
2296-424X
Abstract
Introduction: Charged Particle Therapy plays a key role in the treatment of deep-seated tumours, because of the advantageous energy deposition culminating in the Bragg peak. However, knowledge of the dose delivered in the entrance channel is limited by the lack of data on the beam and fragmentation of the target.Methods: The FOOT experiment has been designed to measure the cross sections of the nuclear fragmentation of projectile and target with two different detectors: an electronic setup for the identification of Z ≥ 3 fragments and a nuclear emulsion spectrometer for Z ≤ 3 fragments. In this paper, we analyze the data taken by exposing four nuclear emulsion spectrometers, with C and C2H4 targets, to 200 MeV/n and 400 MeV/n oxygen beams at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany), and we report the charge identification of produced fragments based on the controlled fading induced on nuclear emulsion films.Results: The goal of identifying fragments as heavy as lithium has been achieved.Discussion: The results will contribute to a better understanding of the nuclear fragmentation process in charged particle therapy and have implications for refining treatment planning in the presence of deep-seated tumors.