학술논문

The Dark Energy Survey Supernova Program: Corrections on Photometry Due to Wavelength-dependent Atmospheric Effects
Document Type
article
Source
The Astronomical Journal, Vol 165, Iss 6, p 222 (2023)
Subject
Type Ia supernovae
Photometry
Atmospheric effects
Cosmology
Astronomy
QB1-991
Language
English
ISSN
1538-3881
Abstract
Wavelength-dependent atmospheric effects impact photometric supernova flux measurements for ground-based observations. We present corrections on supernova flux measurements from the Dark Energy Survey Supernova Program’s 5YR sample (DES-SN5YR) for differential chromatic refraction (DCR) and wavelength-dependent seeing, and we show their impact on the cosmological parameters w and Ω _m . We use g − i colors of Type Ia supernovae to quantify astrometric offsets caused by DCR and simulate point-spread functions (PSFs) using the GalSIM package to predict the shapes of the PSFs with DCR and wavelength-dependent seeing. We calculate the magnitude corrections and apply them to the magnitudes computed by the DES-SN5YR photometric pipeline. We find that for the DES-SN5YR analysis, not accounting for the astrometric offsets and changes in the PSF shape cause an average bias of +0.2 mmag and −0.3 mmag, respectively, with standard deviations of 0.7 mmag and 2.7 mmag across all DES observing bands ( griz ) throughout all redshifts. When the DCR and seeing effects are not accounted for, we find that w and Ω _m are lower by less than 0.004 ± 0.02 and 0.001 ± 0.01, respectively, with 0.02 and 0.01 being the 1 σ statistical uncertainties. Although we find that these biases do not limit the constraints of the DES-SN5YR sample, future surveys with much higher statistics, lower systematics, and especially those that observe in the u band will require these corrections as wavelength-dependent atmospheric effects are larger at shorter wavelengths. We also discuss limitations of our method and how they can be better accounted for in future surveys.