학술논문

Precision Agriculture in Rice (Oryza sativa L.) Biofortified with Selenium
Document Type
article
Source
Biology and Life Sciences Forum, Vol 27, Iss 1, p 14 (2023)
Subject
leaf gas exchanges
Oryza sativa L.
precision agriculture
selenium biofortification
Plant ecology
QK900-989
Animal biochemistry
QP501-801
Biology (General)
QH301-705.5
Language
English
ISSN
2673-9976
Abstract
Remote sensing data are powerful tools that contribute to sustainability and efficiency in crop management. Rice (Oryza sativa L.) is widely recognized as one of the most important crops in terms of economic and social impact. The aim of this study was to evaluate the efficiency of the use of Unmanned Aerial Vehicles (UAVs) in providing valuable information regarding plant health and status with respect to two rice varieties (Ariete and Ceres) submitted to a biofortification workflow with two types of selenium (sodium selenate and sodium selenite). In this context, through the use of synchronized UAVs, the state of the culture was further assessed. As well, digital elevation models, water lines, slope classes/infiltration suitability, and the Normalized Difference Vegetation Index (NDVI) were considered. Additionally, leaf gas exchange measurements were conducted during the biofortification process and Se content in rice was quantified. The NDVI index ranged from 0.76 to 0.80, with no significant differences regarding control. The water drainage pattern following the artificial pattern created by grooves between plots was observed. Furthermore, selenite application up to 100 g Se.ha−1 did not exhibit toxicity effects on the biofortified plants and presented grain enrichment of 16.09 µg g−1 (Ariete) and 15.46 µg g−1 (Ceres). In conclusion, precision agriculture techniques and the utilization of data from leaf gas exchanges allow for efficient monitoring of experimental field conditions and are highly useful tools in decision-making.