학술논문

Mapping of the central sulcus using non-invasive ultra-high-density brain recordings
Document Type
article
Source
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Subject
Medicine
Science
Language
English
ISSN
2045-2322
Abstract
Abstract Brain mapping is vital in understanding the brain’s functional organization. Electroencephalography (EEG) is one of the most widely used brain mapping approaches, primarily because it is non-invasive, inexpensive, straightforward, and effective. Increasing the electrode density in EEG systems provides more neural information and can thereby enable more detailed and nuanced mapping procedures. Here, we show that the central sulcus can be clearly delineated using a novel ultra-high-density EEG system (uHD EEG) and somatosensory evoked potentials (SSEPs). This uHD EEG records from 256 channels with an inter-electrode distance of 8.6 mm and an electrode diameter of 5.9 mm. Reconstructed head models were generated from T1-weighted MRI scans, and electrode positions were co-registered to these models to create topographical plots of brain activity. EEG data were first analyzed with peak detection methods and then classified using unsupervised spectral clustering. Our topography plots of the spatial distribution from the SSEPs clearly delineate a division between channels above the somatosensory and motor cortex, thereby localizing the central sulcus. Individual EEG channels could be correctly classified as anterior or posterior to the central sulcus with 95.2% accuracy, which is comparable to accuracies from invasive intracranial recordings. Our findings demonstrate that uHD EEG can resolve the electrophysiological signatures of functional representation in the brain at a level previously only seen from surgically implanted electrodes. This novel approach could benefit numerous applications, including research, neurosurgical mapping, clinical monitoring, detection of conscious function, brain–computer interfacing (BCI), rehabilitation, and mental health.