학술논문

Efficient Neutrophil Activation Requires Two Simultaneous Activating Stimuli
Document Type
article
Source
International Journal of Molecular Sciences, Vol 22, Iss 18, p 10106 (2021)
Subject
degranulation
mediator release
ROS production
NETosis
phagocytosis
extracellular vesicle release
Biology (General)
QH301-705.5
Chemistry
QD1-999
Language
English
ISSN
1422-0067
1661-6596
94017190
Abstract
Neutrophils are abundantly present in the synovium and synovial fluid of patients suffering from arthritis. Neutrophils can be activated by a multitude of stimuli and the current dogma states that this is a two-step process, consisting of a priming step followed by an activation step. Considering that neutrophil activation occurs in an inflammatory environment, where multiple stimuli are present, we argue that a two-step process is highly unlikely. Here, we indeed demonstrate that neutrophils require simultaneous ligation of two different receptors for efficient activation. We isolated human peripheral blood neutrophils and cultured them with various combinations of stimuli (GM-CSF, fMLF, TNF, and LPS). Next, we evaluated essential neutrophil functions, including degranulation and ROS production using flow cytometry, mediator release using ELISA, NETosis by a live cell imaging method, phagocytosis by imaging flow cytometry, and extracellular vesicle (EV) release quantified by high-resolution flow cytometry. Exposure of neutrophils to any combination of stimuli, but not to single stimuli, resulted in significant degranulation, and mediator and EV release. Furthermore, ROS production increased substantially by dual stimulation, yet appeared to be more dependent on the type of stimulation than on dual stimulation. Phagocytosis was induced to its maximum capacity by a single stimulus, while NETosis was not induced by any of the used physiological stimuli. Our data indicate that neutrophil activation is tightly regulated and requires activation by two simultaneous stimuli, which is largely independent of the combination of stimuli.