학술논문

The Development of Dark Hyperspectral Absolute Calibration Model Using Extended Pseudo Invariant Calibration Sites at a Global Scale: Dark EPICS-Global
Document Type
article
Source
Remote Sensing, Vol 15, Iss 8, p 2141 (2023)
Subject
DAHAC model
DaHD
DAHAC model double ratio
EO-1 Hyperion
hyperspectral absolute calibration
Landsat-7
Science
Language
English
ISSN
2072-4292
Abstract
This research aimed to develop a novel dark hyperspectral absolute calibration (DAHAC) model using stable dark targets of “Global Cluster-36” (GC-36), one of the clusters from the “300 Class Global Classification”. The stable dark sites were identified from GC-36 called “Dark EPICS-Global” covering the surface types viz. dark rock, volcanic area, and dark sand. The Dark EPICS-Global shows a temporal variation of 0.02 unit reflectance. This work used the Landsat-8 (L8) Operational Land Imager (OLI), Sentinel-2A (S2A) Multispectral Instrument (MSI), and Earth Observing One (EO-1) Hyperion data for the DAHAC model development, where well-calibrated L8 and S2A were used as the reference sensors, while EO-1 Hyperion with a 10 nm spectral resolution was used as a hyperspectral library. The dark hyperspectral dataset (DaHD) was generated by combining the normalized hyperspectral profile of L8 and S2A for the DAHAC model development. The DAHAC model developed in this study takes into account the solar zenith and azimuth angles, as well as the view zenith and azimuth angles in Cartesian coordinates form. This model is capable of predicting TOA reflectance in all existing spectral bands of any sensor. The DAHAC model was then validated with the Landsat-7 (L7), Landsat-9 (L9), and Sentinel-2B (S2B) satellites from their launch dates to March 2022. These satellite sensors vary in terms of their spectral resolution, equatorial crossing time, spatial resolution, etc. The comparison between the DAHAC model and satellite measurements showed an accuracy within 0.01 unit reflectance across the overall spectral band. The proposed DAHAC model uncertainty level was determined using Monte Carlo simulation and found to be 0.04 and 0.05 unit reflectance for the VNIR and SWIR channels, respectively. The DAHAC model double ratio was used as a tool to perform the inter-comparison between two satellites. The sensor inter-comparison results for L8 and L9 showed a 2% difference and 1% for S2A and S2B across all spectral bands.