학술논문

Background identification in cryogenic calorimeters through $$\alpha -\alpha $$ α - α delayed coincidences
Document Type
article
Source
European Physical Journal C: Particles and Fields, Vol 81, Iss 8, Pp 1-9 (2021)
Subject
Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1434-6044
1434-6052
Abstract
Abstract Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $$\alpha -\alpha $$ α - α delayed coincidences in $${}^{232}$$ 232 Th and $${}^{238}$$ 238 U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the $$\alpha $$ α decay position.