학술논문

Nutrient composition of Chenopodium formosanum Koidz. bran: Fractionation and bioactivity of its soluble active polysaccharides
Document Type
article
Source
PeerJ, Vol 10, p e13459 (2022)
Subject
Red Quinoa
Antioxidant activity
Pseudo-cereals
Gel filtration
Polysaccharides
Medicine
Biology (General)
QH301-705.5
Language
English
ISSN
2167-8359
Abstract
Background Chenopodium formosanum Koidz. Amaranthaceae—also known as Djulis or red quinoa (RQ)—is a cereal plant indigenous to Taiwan, known for its high nutrient value. However, its bran is considered a waste product and the nutrient value has never been analyzed. Methods In this study, we examined the proximate composition of RQ bran, specifically its soluble polysaccharide fractions. Results RQ bran exhibited high contents of protein (16.56%), ash (7.10%), carbohydrate (60.45%), total polyphenolics (1.85%), betaxanthin (9.91 mg/100 g of RQ bran), and indicaxanthin (7.27 mg/100 g of RQ bran). Specifically, it was rich in polyunsaturated fatty acids (PUFAs; 39.24%)—with an n-6/n-3 and PUFA/saturated fatty acid (SFA) ratio of 18.137 and 0.743, respectively. Four soluble polysaccharide fractions were also obtained: CF-1, CF-2, CF-3, and CF-4, with yields of 3.90%, 6.74%, 22.28%, and 0.06%, respectively, and molecular weights of 32.54, 24.93, 72.39, and 55.45 kDa, respectively. CF-1, CF-2, CF-3, and CF-4 had respectively 15.67%, 42.41%, 5.44%, and 14.52% peptide moiety content and 38.92%, 50.70%, 93.76%, and 19.80% carbohydrate moiety. In CF-2, the glucose content was 95.86 mol% and that of leucine was 16.23%, implicating the presence of a typical leucinoglucan. All four polysaccharide fractions lacked glutamic acid and hydroxyproline. The IC50 of CF-1, CF-2, and CF-3 was respectively 12.05, 3.98, and 14.5 mg/mL for DPPH free radical–scavenging ability; 5.77, 4.10, and 7.03 mg/mL for hydrogen peroxide–scavenging capability; 0.26, 0.05, and 0.19 mg/mL for O2− free radical–scavenging capability; and 100.41, 28.12, and 29.73 mg/mL for Fe2+ chelation. Conclusion Our results indicated that RQ bran has a large amount of nutrient compounds, and a cost-efficient process for their extraction is needed. Their biomedical application as nutraceuticals also warrants further investigation.