학술논문

The Terra Vega Active Light Source: A First Step in a New Approach to Perform Nighttime Absolute Radiometric Calibrations and Early Results Calibrating the VIIRS DNB
Document Type
article
Source
Remote Sensing, Vol 11, Iss 6, p 710 (2019)
Subject
radiometry
vicarious calibration
NPP
JPSS-1
NOAA-20
VIIRS
DNB
night imaging
point source
Science
Language
English
ISSN
2072-4292
Abstract
A fully automated, National Institute of Standards and Technology (NIST)-traceable artificial light source called Terra Vega has been developed to radiometrically calibrate the Visible Infrared Imaging Radiometer (VIIRS) Day Night Band (DNB) working in high gain stage (HGS) mode. The Terra Vega active point source is a calibrated integrating sphere that is only a fraction in size of a VIIRS DNB pixel. As such, it can be considered analogous to a ground-based photometric reference star. Vicarious calibrations that employ active point sources are different than those that make use of traditional extended sources and can be applyed to quantify the brightness of artificial light sources. The active source is successfully fielded, and early results indicate that it can be used to augment and validate the radiometric calibration of the VIIRS DNB HGS sensor on both the Suomi National Polar-orbiting Partnership (NPP) and NOAA-20 satellites. The VIIRS DNB HGS sensor can benefit from this technology as on-board calibration is challenging and hinges on transferring low gain stage (LGS) calibration using a solar diffuser to the medium gain stage (MGS) and HGS via regions of overlap. Current vicarious calibration methods that use a lunar-illuminated extended source estimate the HGS radiometric accuracy to within 8-15%. By comparison, early results and analysis showed that Terra Vega is stable to about 1%. Under clear dark night conditions, predicted top-of-atmosphere radiance from Terra Vega ranged between 1–11% of VIIRS measured values. Terra Vega’s excellent stability opens up new opportunities to validate and develop nighttime imaging applications based on point sources.