학술논문

Thermo-Hydraulic Analysis of Slightly Inclined Finned Channel under Natural Convection
Document Type
article
Source
Journal of Applied Fluid Mechanics, Vol 15, Iss 4, Pp 985-998 (2022)
Subject
grashof number
inclination
clearance
convective coefficient
fin efficiency
Mechanical engineering and machinery
TJ1-1570
Language
English
ISSN
1735-3572
1735-3645
Abstract
The influence of slight inclination, ‘α’ (i.e., 10°, 15°, and 20°) of the channel comprised of shrouded vertical rectangular non-isothermal fin array has been computationally investigated. Simulations are performed to obtain the convective coefficient of heat transfer for the different dimensionless fin spacing (S*= 0.2, 0.3, 0.5), non-dimensional fin tip to shroud clearances (C*= 0.1, 0.2 and 0.3), Grashof numbers (Gr= 1.08×105, 4.42×105 and 11.5×105), fin lengths (L= 0.25m and 0.5m) and fin heights (H= 0.025m, 0.04m, and 0.055m). Hydrodynamic behavior of the fluid indicates that a significant amount of flow reversal occurs near the entrance of the channel at very low inclination which vanishes with the increase in inclination. Further, at higher length, reverse flow is found to occur only in the clearance zone. An increase in the value of ‘α’ from 10° to 20°, results in enhancement of convective coefficient up to a maximum of 161%. An increase in the value of fin spacing from 0.2 to 0.5 results in the enhancement of the convective heat transfer coefficient. At α= 15° and 20°, the heat transfer is enhanced by 84.1% and 101.6%, respectively, while at α=10°, the same is reduced by 33.3%. At lower fin spacing (S*