학술논문

Amino-Functionalized Titanium Based Metal-Organic Framework for Photocatalytic Hydrogen Production
Document Type
article
Source
Molecules, Vol 27, Iss 4241, p 4241 (2022)
Subject
metal-organic frameworks
photocatalytic hydrogen production
amino-functionalized
titanium
photocatalyst
Organic chemistry
QD241-441
Language
English
ISSN
1420-3049
Abstract
Photocatalytic hydrogen production using stable metal-organic frameworks (MOFs), especially the titanium-based MOFs (Ti-MOFs) as photocatalysts is one of the most promising solutions to solve the energy crisis. However, due to the high reactivity and harsh synthetic conditions, only a limited number of Ti-MOFs have been reported so far. Herein, we synthesized a new amino-functionalized Ti-MOFs, named NH2-ZSTU-2 (ZSTU stands for Zhejiang Sci-Tech University), for photocatalytic hydrogen production under visible light irradiation. The NH2-ZSTU-2 was synthesized by a facile solvothermal method, composed of 2,4,6-tri(4-carboxyphenylphenyl)-aniline (NH2-BTB) triangular linker and infinite Ti-oxo chains. The structure and photoelectrochemical properties of NH2-ZSTU-2 were fully studied by powder X-ray diffraction, scanning electron microscope, nitro sorption isotherms, solid-state diffuse reflectance absorption spectra, and Mott–Schottky measurements, etc., which conclude that NH2-ZSTU-2 was favorable for photocatalytic hydrogen production. Benefitting from those structural features, NH2-ZSTU-2 showed steady hydrogen production rate under visible light irradiation with average photocatalytic H2 yields of 431.45 μmol·g−1·h−1 with triethanolamine and Pt as sacrificial agent and cocatalyst, respectively, which is almost 2.5 times higher than that of its counterpart ZSTU-2. The stability and proposed photocatalysis mechanism were also discussed. This work paves the way to design Ti-MOFs for photocatalysis.