학술논문

Current Progress in 2D Metal–Organic Frameworks for Electrocatalysis
Document Type
article
Source
Small Structures, Vol 4, Iss 6, Pp n/a-n/a (2023)
Subject
electrocatalysts
metal–organic frameworks
nanosheets
water splitting
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
2688-4062
Abstract
The 2D nanosheets of metal–organic frameworks (MOFs) have recently emerged as a promising material that makes them valuable in widespread electrocatalytic fields due to their atomic‐level thickness, abundant active sites, and large surface area. Efficient electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting are highly desired with low overpotentials to promote the industrial applications of energy conversion and devices. 2D MOF nanostructures provide long‐term stability and high electrical conductivity to enhance catalyst activity and durability. This review briefly summarizes the synthesis and electrocatalytic applications of 2D MOF for HER/OER/water splitting. More attention is focused on the synthetic strategies of 2D MOF and their derivatives. The catalytic performance and superior properties of these materials are highlighted. The outperformance of these materials originates from the rational design, myriad of abundant active sites, and atomic‐level thickness. The current and future challenges in this field and the scientific perspectives to overcome these challenges are highlighted. It is suggested that the construction of 2D MOF nanostructures can develop a state‐of‐the‐art electrocatalyst in energy and environmental division.