학술논문

The GSTO2 (rs156697) Polymorphism Modifies Diabetic Nephropathy Risk
Document Type
article
Source
Medicina, Vol 59, Iss 1, p 164 (2023)
Subject
type 2 diabetes mellitus
diabetic nephropathy risk
genetic polymorphisms
advanced glycation end products
glutathione transferase
Medicine (General)
R5-920
Language
English
ISSN
1648-9144
1010-660X
Abstract
Background and Objectives: In the development of type 2 diabetes mellitus (T2DM) and its complications, genetic and environmental factors play important roles. Diabetic nephropathy (DN), one of the major microangiopathic chronic diabetic complications, is associated with an increased risk of major cardiovascular events and all-cause mortality. The present study was designed to investigate the possible modifying effect of glutathione transferase polymorphisms (GSTM1, GSTT1, GSTP1 rs1138272/rs1695, GSTO1 rs4925 and GSTO2 rs156697) in the susceptibility to T2DM and diabetic nephropathy. Materials and Methods: GSTM1 and GSTT1 deletion polymorphisms were determined by multiplex PCR, whereas GSTO1, GSTO2, and GSTP1 polymorphisms were determined by the real-time PCR in 160 T2DM patients and 248 age- and gender-matched controls. Advanced glycation end products (AGEs) were measured by ELISA. Results: Among six investigated GST polymorphisms, a significant association between the GST genotypes and susceptibility for development of diabetes mellitus was found for the GSTM1, GSTT1, GSTP1 (rs1138272) and GSTO1 polymorphisms. When the GST genotypes’ distribution in diabetes patients was assessed in the subgroups with and without diabetic nephropathy, a significant association was found only for the GSTO2 rs156697 polymorphism. Diabetic patients, carriers of the GSTM1 null, GSTT1 null and variant GSTO1*AA genotypes, had significantly increased levels of AGEs in comparison with carriers of the GSTM1 active, GSTT1 active and referent GSTO1*CC genotypes (p < 0.001, p < 0.001, p = 0.004, respectively). Conclusions: The present study supports the hypothesis that GST polymorphisms modulate the risk of diabetes and diabetic nephropathy and influence the AGEs concentration, suggesting the potential regulatory role of these enzymes in redox homeostasis disturbances.