학술논문

Isolated anti-Ro52 identifies a severe subset of Sjögren’s syndrome patients
Document Type
article
Source
Frontiers in Immunology, Vol 14 (2023)
Subject
anti-Ro52/TRIM21
autoantibodies
cryoglobulinaemia
rheumatoid factor, Ro/La
Sjögren’s syndrome
Immunologic diseases. Allergy
RC581-607
Language
English
ISSN
1664-3224
Abstract
IntroductionSerum autoantibodies targeting the SSA/Ro proteins are a key component of the classification criteria for the diagnosis of Sjögren’s syndrome (SS). Most patients' serum reacts with both Ro60 and Ro52 proteins. Here we compare the molecular and clinical characteristics of patients diagnosed with SS with anti-Ro52 in the presence or absence of anti-Ro60/La autoantibodies.MethodsA cross-sectional study was performed. Patients in the SS biobank at Westmead Hospital (Sydney, Australia) that were positive for anti-Ro52 were included and stratified based on the absence (isolated) or presence (combined) of anti-Ro60/La, measured by line immunoassay. We examined clinical associations and the serological and molecular characteristics of anti-Ro52 using ELISA and mass spectrometry in serological groups.ResultsA total of 123 SS patients were included for study. SS patients with isolated anti-Ro52 (12%) identified a severe serological subset characterised by higher disease activity, vasculitis, pulmonary involvement, rheumatoid factor (RhF) and cryoglobulinaemia. Serum antibodies reacting with Ro52 in the isolated anti-Ro52 subset displayed less isotype switching, less immunoglobulin variable region subfamily usage and a lower degree of somatic hypermutation than the combined anti-Ro52 subset.ConclusionsIn our cohort of SS patients, isolated anti-Ro52 represents a severe subset of SS, and is associated with the presence of cryoglobulinaemia. We therefore provide clinical relevance to the stratification of SS patients by their sero-reactivities. It is possible that the autoantibody patterns may be immunological epiphenomena of the underlying disease process, and further work is required to unearth the mechanisms of the differential clinical phenotypes.