학술논문

Effect of Controlled Atmosphere Packaging on the Physiology and Quality of Fresh-Cut Dictyophora rubrovolvata
Document Type
article
Source
Foods, Vol 12, Iss 8, p 1665 (2023)
Subject
controlled atmosphere
fresh-cut D. rubrovolvata
physiology
nutrition
umami
Chemical technology
TP1-1185
Language
English
ISSN
2304-8158
Abstract
Dictyophora rubrovolvata is a typical edible fungus of Guizhou Province and is very popular due to its unique taste and texture. In this study, the effect of a controlled atmosphere (CA) on fresh-cut D. rubrovolvata shelf life was investigated. Firstly, this study addresses the influence of different O2 concentrations (5%, 20%, 35%, 50%, 65%, 80%, or 95%) with N2 balance on fresh-cut D. rubrovolvata quality while stored at 4 ± 1 °C for 7 d. Then, on the basis of the determined O2 concentration (5%), CO2 (0%, 5%, 10%, 15%, or 20%) was involved and stored for 8 d at 4 ± 1 °C. Evaluations of physiology parameters, texture, browning degree, nutritional, umami, volatile components, and total colony numbers were determined in fresh-cut D. rubrovolvata. From the results of water migration, the sample of 5% O2/5% CO2/90% N2 was closer to 0 d than other groups at 8 days. Meanwhile, the polyphenol oxidase (2.26 ± 0.07 U/(g·min)), and catalase activity (4.66 ± 0.08 U/(g·min·FW)) were superior to the samples of other treatment groups on the eighth day (3.04 ± 0.06 to 3.84 ± 0.10 U/(g·min), 4.02 ± 0.07 to 4.07 ± 0.07 U/(g·min·FW)). Therefore, we found that a gas environment with 5% O2/5% CO2/90% N2 could ensure the membrane integrity, oxidation, and prevent the browning of fresh-cut D. rubrovolvata, thus better maintaining the physiological parameters. Meanwhile, it also maintained the samples’ texture, color, nutritional value, and umami taste. Furthermore, it inhibited the increase in total colony numbers. The volatile components were closer to the initial level compared with other groups. The results indicate that fresh-cut D. rubrovolvata could maintain its shelf life and quality when stored in 5% O2/5% CO2/90% N2 at 4 ± 1 °C.