학술논문

IPPT4KRL: Iterative Post-Processing Transfer for Knowledge Representation Learning
Document Type
article
Source
Machine Learning and Knowledge Extraction, Vol 5, Iss 1, Pp 43-58 (2023)
Subject
knowledge graph
knowledge representation
knowledge graph embedding
knowledge transfer
transfer learning
Computer engineering. Computer hardware
TK7885-7895
Language
English
ISSN
2504-4990
Abstract
Knowledge Graphs (KGs), a structural way to model human knowledge, have been a critical component of many artificial intelligence applications. Many KG-based tasks are built using knowledge representation learning, which embeds KG entities and relations into a low-dimensional semantic space. However, the quality of representation learning is often limited by the heterogeneity and sparsity of real-world KGs. Multi-KG representation learning, which utilizes KGs from different sources collaboratively, presents one promising solution. In this paper, we propose a simple, but effective iterative method that post-processes pre-trained knowledge graph embedding (IPPT4KRL) on individual KGs to maximize the knowledge transfer from another KG when a small portion of alignment information is introduced. Specifically, additional triples are iteratively included in the post-processing based on their adjacencies to the cross-KG alignments to refine the pre-trained embedding space of individual KGs. We also provide the benchmarking results of existing multi-KG representation learning methods on several generated and well-known datasets. The empirical results of the link prediction task on these datasets show that the proposed IPPT4KRL method achieved comparable and even superior results when compared against more complex methods in multi-KG representation learning.