학술논문

LTCC and Bulk Zn4B6O13–Zn2SiO4 Composites for Submillimeter Wave Applications
Document Type
article
Source
Materials, Vol 14, Iss 4, p 1014 (2021)
Subject
Zn4B6O13-Zn2SiO4 composite
low temperature cofired ceramics
dielectric properties
THz time domain spectroscopy
submillimeter wave applications
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
14041014
1996-1944
Abstract
New zinc metaborate Zn4B6O13–willemite Zn2SiO4 composites were investigated as promising materials for LTCC (low temperature cofired ceramics) substrates of microelectronic circuits for submillimeter wave applications. Composites were prepared as bulk ceramics and LTCC multilayer structures with cofired conductive thick films. The phase composition, crystal structure, microstructure, sintering behavior, and dielectric properties were studied as a function of willemite content (0, 10, 13, 15, 20, 40, 50, 60, 100 wt %). The dielectric properties characterization performed by THz time domain spectroscopy proved the applicability of the composites at very high frequencies. For the 87% Zn4B6O13–13% Zn2SiO4 composite, the best characteristics were obtained, which are suitable for LTCC submillimeter wave applications. These were a low sintering temperature of 930 °C, compatibility with Ag-based conductors, a low dielectric constant (5.8 at 0.15–1.1 THz), a low dissipation factor (0.006 at 1 THz), and weak frequency and temperature dependences of dielectric constant.