학술논문

Application of Phenomics to Elucidate the Influence of Rootstocks on Drought Response of Tomato
Document Type
article
Source
Agronomy, Vol 12, Iss 7, p 1529 (2022)
Subject
phenomics
Solanum lycopersicum
rootstocks
drought
wild species
water use index
Agriculture
Language
English
ISSN
2073-4395
Abstract
The cultivation of nutritionally and economically important crops like tomato are often threatened by dry spells due to drought as these crops largely depend on an assured water supply. The magnitude and intensity of drought is predicted to intensify under climate change scenarios, particularly in semi-arid regions, where water is already a scarce resource. Hence, it is imperative to devise strategies to mitigate the adverse effects of drought on tomato through improvement in the plant’s efficiency to utilise the moisture in the growth medium. Since the root is the entry point for water, its intrinsic structure and functions play a crucial role in maintaining the soil–water–plant continuum during moisture deficit at the rhizosphere. Grafting offers a great opportunity to replace the root system of the cultivated tomato plants with that of wild species and hence provide a rapid solution to modulate root system architecture in contrast to the time-consuming conventional breeding approach. However, the success in developing the best graft combination of cultivated tomato and rootstock depends on the source of rootstock and selection methods. In this study, we used a high throughput phenomics facility to assess the efficiency of tomato, grafted on the rootstocks of different genetic backgrounds, at different levels of moisture in the soil. Rootstocks included tomato cultivars and the hybrids, derived from the crosses involving wild relatives, as donor parents. Among the rootstocks, an interspecific (Solanum lycopersicum × S. pennellii) derivative RF4A was highly efficient in terms of productive use of water. The RF4A rootstock-grafted plants were more conservative in water use with higher plant water status through relatively better stomatal regulation and hence were more efficient in generating greater biomass under water stress conditions. These plants could maintain a higher level of PSII efficiency, signifying better photosynthetic efficiency even under water stress. The distinct response of interspecific rootstock, RF4A, to water stress can be ascribed to the effective root system acquired from a wild parent (S. pennellii), and hence efficient water uptake. Overall, we demonstrated the efficient use of a phenomics platform and developed a protocol to identify promising rootstock–scion combinations of tomato for optimization of water use.