학술논문

Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling
Document Type
article
Source
Atmospheric Measurement Techniques, Vol 10, Iss 5, Pp 1875-1892 (2017)
Subject
Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
Language
English
ISSN
1867-1381
1867-8548
Abstract
Ammonia (NH3) fluxes were estimated from a field being grazed by dairy cattle during spring by applying a backward Lagrangian stochastic model (bLS) model combined with horizontal concentration gradients measured across the field. Continuous concentration measurements at field boundaries were made by open-path miniDOAS (differential optical absorption spectroscopy) instruments while the cattle were present and for 6 subsequent days. The deposition of emitted NH3 to clean patches on the field was also simulated, allowing both net and gross emission estimates, where the dry deposition velocity (vd) was predicted by a canopy resistance (Rc) model developed from local NH3 flux and meteorological measurements. Estimated emissions peaked during grazing and decreased after the cattle had left the field, while control on emissions was observed from covariance with temperature, wind speed and humidity and wetness measurements made on the field, revealing a diurnal emission profile. Large concentration differences were observed between downwind receptors, due to spatially heterogeneous emission patterns. This was likely caused by uneven cattle distribution and a low grazing density, where hotspots of emissions would arise as the cattle grouped in certain areas, such as around the water trough. The spatial complexity was accounted for by separating the model source area into sub-sections and optimising individual source area coefficients to measured concentrations. The background concentration was the greatest source of uncertainty, and based on a sensitivity/uncertainty analysis the overall uncertainty associated with derived emission factors from this study is at least 30–40 %.Emission factors can be expressed as 6 ± 2 g NH3 cow−1 day−1, or 9 ± 3 % of excreted urine-N emitted as NH3, when deposition is not simulated and 7 ± 2 g NH3 cow−1 day−1, or 10 ± 3 % of excreted urine-N emitted as NH3, when deposition is included in the gross emission model. The results suggest that around 14 ± 4 % of emitted NH3 was deposited to patches within the field that were not affected by urine or dung.