학술논문

Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties
Document Type
article
Source
Nuclear Materials and Energy, Vol 12, Iss , Pp 200-204 (2017)
Subject
Nuclear engineering. Atomic power
TK9001-9401
Language
English
ISSN
2352-1791
Abstract
In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock. Keywords: Fracture, Tungsten, ITER, Divertor, High heat flux, Recrystallization