학술논문

Performance of the Taiwan Earth System Model in Simulating Climate Variability Compared With Observations and CMIP6 Model Simulations
Document Type
article
Source
Journal of Advances in Modeling Earth Systems, Vol 13, Iss 7, Pp n/a-n/a (2021)
Subject
TaiESM
CMIP6
climate variability
model evaluation
Physical geography
GB3-5030
Oceanography
GC1-1581
Language
English
ISSN
1942-2466
Abstract
Abstract This study evaluates the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the observed climate variability in the historical simulation of the Coupled Model Intercomparison Phase 6 (CMIP6). TaiESM1 is developed on the basis of the Community Earth System Model version 1.2.2, with the inclusion of several new physical schemes and improvements in the atmosphere model. The new additions include an improved triggering function in the cumulus convection scheme, a revised distribution‐based formula in the cloud fraction scheme, a new aerosol scheme, and a unique scheme for three‐dimensional surface absorption of shortwave radiation that accounts for the influence of complex terrains. In contrast to the majority of model evaluation processes, which focus mainly on the climatological mean, this evaluation focuses on climate variability parameters, including the diurnal rainfall cycle, precipitation extremes, synoptic eddy activity, intraseasonal fluctuation, monsoon evolution, and interannual and multidecadal atmospheric and oceanic teleconnection patterns. A series of intercomparisons between the simulations of TaiESM1 and CMIP6 models and observations indicate that TaiESM1, a participating model in CMIP6, can realistically simulate the observed climate variability at various time scales and are among the leading CMIP6 models in terms of many key climate features.