학술논문

Translating nanoEHS data using EPA NaKnowBase and the resource description framework [version 1; peer review: 2 approved]
Document Type
article
Source
F1000Research, Vol 13 (2024)
Subject
nanomaterial
database
ontology
eng
Medicine
Science
Language
English
ISSN
2046-1402
Abstract
Background The U.S. Federal Government has supported the generation of extensive amounts of nanomaterials and related nano Environmental Health and Safety (nanoEHS) data, there is a need to make these data available to stakeholders. With recent efforts, a need for improved interoperability, translation, and sustainability of Federal nanoEHS data in the United States has been realized. The NaKnowBase (NKB) is a relational database containing experimental results generated by the EPA Office of Research and Development (ORD) regarding the actions of engineered nanomaterials on environmental and biological systems. Through the interaction of the National Nanotechnology Initiative’s Nanotechnology Environmental Health Implications (NEHI) Working Group, and the Database and Informatics Interest Group (DIIG), a U.S. Federal nanoEHS Consortium has been formed. Methods The primary goal of this consortium is to establish a “common language” for nanoEHS data that aligns with FAIR data standards. A second goal is to overcome nomenclature issues inherent to nanomaterials data, ultimately allowing data sharing and interoperability across the diverse U.S. Federal nanoEHS data compendium, but also in keeping a level of consistency that will allow interoperability with U.S. and European partners. The most recent version of the EPA NaKnowBase (NKB) has been implemented for semantic integration. Computational code has been developed to use each NKB record as input, modify and filter table data, and subsequently output each modified record to a Research Description Framework (RDF). To improve the accuracy and efficiency of this process the EPA has created the OntoSearcher tool. This tool partially automates the ontology mapping process, thereby reducing onerous manual curation. Conclusions Here we describe the efforts of the US EPA in promoting FAIR data standards for Federal nanoEHS data through semantic integration, as well as in the development of NAMs (computational tools) to facilitate these improvements for nanoEHS data at the Federal partner level.