학술논문

Inferring FDG-PET-positivity of lymph node metastases in proven lung cancer from contrast-enhanced CT using radiomics and machine learning
Document Type
article
Source
European Radiology Experimental, Vol 6, Iss 1, Pp 1-15 (2022)
Subject
Machine learning
Lymph nodes
Lymphatic metastasis
Lung neoplasms
Tomography (x-ray computed)
Medical physics. Medical radiology. Nuclear medicine
R895-920
Language
English
ISSN
2509-9280
Abstract
Abstract Background We evaluated the role of radiomics applied to contrast-enhanced computed tomography (CT) in the detection of lymph node (LN) metastases in patients with known lung cancer compared to 18F-fluorodeoxyglucose positron emission tomography (PET)/CT as a reference. Methods This retrospective analysis included 381 patients with 1,799 lymph nodes (450 malignant, 1,349 negative). The data set was divided into a training and validation set. A radiomics analysis with 4 filters and 6 algorithms resulting in 24 different radiomics signatures and a bootstrap algorithm (Bagging) with 30 bootstrap iterations was performed. A decision curve analysis was applied to generate a net benefit to compare the radiomics signature to two expert radiologists as one-by-one and as a prescreening tool in combination with the respective radiologist and only the radiologists. Results All 24 modeling methods showed good and reliable discrimination for malignant/benign LNs (area under the curve 0.75−0.87). The decision curve analysis showed a net benefit for the least absolute shrinkage and selection operator (LASSO) classifier for the entire probability range and outperformed the expert radiologists except for the high probability range. Using the radiomics signature as a prescreening tool for the radiologists did not improve net benefit. Conclusions Radiomics showed good discrimination power irrespective of the modeling technique in detecting LN metastases in patients with known lung cancer. The LASSO classifier was a suitable diagnostic tool and even outperformed the expert radiologists, except for high probabilities. Radiomics failed to improve clinical benefit as a prescreening tool.