학술논문

Multifunctional Multilayer Nanospheres for Ion Regulation in Lithium Metal Batteries
Document Type
article
Source
Batteries, Vol 9, Iss 3, p 149 (2023)
Subject
solid-electrolyte interphase
multifunctional multilayer nanospheres
lithium metal batteries
Production of electric energy or power. Powerplants. Central stations
TK1001-1841
Industrial electrochemistry
TP250-261
Language
English
ISSN
2313-0105
Abstract
Lithium metal anodes have the potential to break through the theoretical energy density bottleneck of commercial lithium ion batteries. However, the solid-electrolyte interphase (SEI) layer generated from the decomposition of traditional lithium metal electrolytes is destroyed during the lithium metal expansion process, resulting in the growth of lithium dendrites and the formation of dead lithium. In this work, multilayer Fe3O4@Al(OH)3@ZnO (FAZ) nanospheres are prepared using a hydrothermal method to modify lithium metal anodes. An SEI layer rich in LiF can be formed in fluorine-poor electrolytes. The battery assembled using FAZ nanospheres remains stable for 100 cycles with Coulombic efficiency up to 98.6%. A battery paired with a LiFePO4 cathode (18.3 mg/cm2) can perform 100 cycles with a capacity retention rate of 87%. This work provides a simple and practical solution for low-fluoride lithium metal battery technology.