학술논문

Effect of Ca Deoxidation on Toughening of Heat-Affected Zone in High-Strength Low-Alloy Steels after Large-Heat-Input Welding
Document Type
article
Source
Metals, Vol 12, Iss 11, p 1830 (2022)
Subject
impact toughness
large-heat-input welding
heat-affected zone
high-strength low-alloy steel
Ca deoxidation
Mining engineering. Metallurgy
TN1-997
Language
English
ISSN
2075-4701
Abstract
Large-heat-input welding can effectively increase the efficiency and reduce the cost of manufacturing a super-large container ship for marine trade worldwide with thick, high-strength low-alloy (HSLA) steel plates; however, it significantly degrades the toughness of the welding heat-affected zone (HAZ). This paper describes the effect of Ca deoxidation on the impact toughness of simulated coarse-grained HAZs (CGHAZs) in HSLA steels after large-heat-input welding at 400 kJ cm−1. The average impact energy of the CGHAZ increases with an increase in Ca content; in particular, the energy of the steel with 25 ppm Ca content is satisfactorily high, owing to the uniform and fine prior austenite grains. In contrast, the grains in the CGHAZs of the steels with relatively low Ca contents are not uniform, leading to large test variabilities at −20 °C. Failure analyses reveal that the major and secondary cracks preferentially propagate along the coarse and brittle grain boundary ferrite (GBF), but their propagation is retarded by the fine and interlocking intragranular acicular ferrite (IAF) as the grain size decreases. It is therefore recommended to increase the Ca content to about 25 ppm during the deoxidation of steelmaking to improve HAZ toughness by forming fine and uniform prior austenite grains and IAF within grains.