학술논문

Superconducting, energy variable heavy ion linac with constant β, multicell cavities of CH-type
Document Type
article
Source
Physical Review Special Topics. Accelerators and Beams, Vol 12, Iss 12, p 120101 (2009)
Subject
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1098-4402
Abstract
An energy variable ion linac consisting of multigap, constant-β cavities was developed. The effect of phase sliding, unavoidable in any constant-β section, is leading to a coherent rf phase motion, which fits well to the H-type structures with their long π-mode sections and separated lenses. The exact periodicity of the cell lengths within each cavity results in technical advantages, such as higher calculation accuracy when only one single period can be simulated, simpler manufacturing, and tuning. This is most important in the case of superconducting cavities. By using this concept, an improved design for a 217 MHz cw superconducting heavy ion linac with energy variation has been worked out. The small output energy spread of ±3 AkeV is provided over the whole range of energy variation from 3.5 to 7.3 AMeV. These capabilities would allow for a competitive research in the field of radiochemistry and for a production of super heavy elements (SHE), especially. A first 19-cell cavity of that type was designed, built, and rf tested successfully at the Institute for Applied Physics (IAP) Frankfurt. A 325.224 MHz, seven-cell cavity with constant β=0.16 is under development and will be operated in a frequency controlled mode. It will be equipped with a power coupler and beam tests with Unilac beams at GSI are foreseen.