학술논문

Effect of Reheating Temperature on the Microstructure and Properties of Cu-Containing 440 MPa Grade Non-Tempered Ship Plate Steel
Document Type
article
Source
Materials, Vol 17, Iss 7, p 1630 (2024)
Subject
ship plate steel
reheating temperature
original austenite
precipitated phase
precipitation strength
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
1996-1944
Abstract
This study investigated the effects of reheating temperature on the microstructure and mechanical properties of Cu-containing 440 MPa grade non-tempered ship plate steel. The mechanical properties test, thermodynamic simulation, optical microscopy, scanning electron microscopy, transmission electron microscopy, and other tests were performed. The results revealed that with increasing reheating temperature, the ferrite grain size of Cu-containing 440 MPa non-tempered ship plate steel increased. Also, with increasing reheating temperature, the size of copper particles and niobium–titanium composite precipitates in the original austenite decreased. Consequently, this led to a weakening of the pinning effect on the original austenite and an increase in the size of the transformed ferrite grains. Moreover, with increasing reheating temperature, the number of Cu precipitates in the test steel after air cooling and rolling increased, while the size of the precipitates decreased, thereby weakening the solid solution strengthening effect of Cu, and precipitation was enhanced. Additionally, as the reheating temperature increased, the tensile strength and yield strength of the air-cooled test steel after rolling increased, while the impact toughness decreased.