학술논문

Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
Document Type
article
Source
Chinese Journal of Mechanical Engineering, Vol 37, Iss 1, Pp 1-10 (2024)
Subject
Non-penetration lap laser welding
Bulging distortion
Austenitic stainless steel
Compressive stress
Tension stress
Ocean engineering
TC1501-1800
Mechanical engineering and machinery
TJ1-1570
Language
English
ISSN
2192-8258
Abstract
Abstract Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance. However, the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side. In this paper, non-penetration lap laser welding experiments, were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser, to investigate the mechanism of bulging distortion. A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out, and the deflection and distortion profile of partially penetrated side of the sheets were measured using a non-contact laser interferometer. In addition, the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress. The results show that, during the heating stage of the thermal cycle of laser lap welding, the partial penetration side of the SUS304 steel sheet generates compressive stress, which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet, thereby forming a bulge. The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.