학술논문

Noise sensitivity of 89Zr-Immuno-PET radiomics based on count-reduced clinical images
Document Type
article
Source
EJNMMI Physics, Vol 9, Iss 1, Pp 1-13 (2022)
Subject
89Zr-Immuno PET
Radiomics
Noise
Precision
Bias
Repeatability
Medical physics. Medical radiology. Nuclear medicine
R895-920
Language
English
ISSN
2197-7364
Abstract
Abstract Purpose Low photon count in 89Zr-Immuno-PET results in images with a low signal-to-noise ratio (SNR). Since PET radiomics are sensitive to noise, this study focuses on the impact of noise on radiomic features from 89Zr-Immuno-PET clinical images. We hypothesise that 89Zr-Immuno-PET derived radiomic features have: (1) noise-induced variability affecting their precision and (2) noise-induced bias affecting their accuracy. This study aims to identify those features that are not or only minimally affected by noise in terms of precision and accuracy. Methods Count-split 89Zr-Immuno-PET patient scans from previous studies with three different 89Zr-labelled monoclonal antibodies were used to extract radiomic features at 50% (S50p) and 25% (S25p) of their original counts. Tumour lesions were manually delineated on the original full-count 89Zr-Immuno-PET scans. Noise-induced variability and bias were assessed using intraclass correlation coefficient (ICC) and similarity distance metric (SDM), respectively. Based on the ICC and SDM values, the radiomic features were categorised as having poor [0, 0.5), moderate [0.5, 0.75), good [0.75, 0.9), or excellent [0.9, 1] precision and accuracy. The number of features classified into these categories was compared between the S50p and S25p images using Fisher’s exact test. All p values