학술논문

Heat flow, thermal anomalies, tectonic regimes and high-temperature geothermal systems in fault zones
Document Type
article
Source
Comptes Rendus. Géoscience, Vol , Iss , Pp 1-33 (2023)
Subject
Geothermal energy
Heat flow
Permeability
Fault zones
Fault geometry
Geophysics. Cosmic physics
QC801-809
Chemistry
QD1-999
Geology
QE1-996.5
Language
English
French
ISSN
1778-7025
Abstract
The potential of high-temperature $({>}150~\text{°}\mathrm{C})$ geothermal systems in crustal fault zones (fault cores and hundreds of meters wide networks of interconnected fractures in the damage zone) is underestimated. Based on numerical models, we show that topography-driven, poroelasticity-driven as well as buoyancy-driven forces play a significant role in the establishment of shallow (1–4 km) thermal anomalies in fault zones. We investigate the role of permeability, topography, fault dip, tectonic regime and fault geometry on the amplitude of thermal anomalies. Favorable conditions include: (i) a damage zone thickness $>$ 100 m, (ii) a minimum cumulative displacement of 100–150 m and (iii) fault zone lengths of at least one kilometer. Based on these parameters, we propose new potential targets for the geothermal exploration of fault zones in Western Europe.