학술논문

Endoplasmic Reticulum Stress and Unfolded Protein Response in Atm-Deficient Thymocytes and Thymic Lymphoma Cells Are Attributable to Oxidative Stress
Document Type
article
Source
Neoplasia: An International Journal for Oncology Research, Vol 10, Iss 2, Pp 160-167 (2008)
Subject
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Language
English
ISSN
1476-5586
1522-8002
Abstract
Both oxidative stress and endoplasmic reticulum (ER) stress have been implicated in carcinogenesis. It is well documented that cells deficient in the ataxia-telangiectasia mutated (ATM) gene undergo oxidative stress, which is critically involved in thymic lymphomagenesis in Atm-/- mice. Here we demonstrate that undifferentiated Atm-/- thymocytes show signs of ER stress and of the unfolded protein response (UPR). Using two-dimensional (2-D) gel electrophoresis and mass spectrometry (MS) analysis, we identified 22 differentially expressed proteins, including the ER stress marker glucose-regulated protein 78 (GRP78), in Atm-/- thymocytes and in Atm-/- thymic lymphoma cells relative to Atm+/+ thymocytes. The phosphorylated α subunit of eukaryotic translation initiation factor 2 (p-eIF2α), a UPR marker, was also increased in Atm-/- thymocytes. Cells of the ATL-1 line, which were derived from an Atm-/- mouse thymic lymphoma, were more sensitive to the ER stress inducer tunicamycin than were Atm+/+ thymic leukemia ASL-1 cells. Notably, treatment with hydrogen peroxide duplicated the effects of ATM deficiency in cultured thymocytes, and treatment with the novel cell-permeable thiol antioxidant N-acetylcysteine amide (AD4) reduced elevated p-eIF2α levels in thymocytes of Atm-/- mice. Thus, we propose that ER stress and the UPR are secondary to oxidative stress in Atm-/- thymocytes.