학술논문

Translating color fundus photography to indocyanine green angiography using deep-learning for age-related macular degeneration screening
Document Type
article
Source
npj Digital Medicine, Vol 7, Iss 1, Pp 1-9 (2024)
Subject
Computer applications to medicine. Medical informatics
R858-859.7
Language
English
ISSN
2398-6352
Abstract
Abstract Age-related macular degeneration (AMD) is the leading cause of central vision impairment among the elderly. Effective and accurate AMD screening tools are urgently needed. Indocyanine green angiography (ICGA) is a well-established technique for detecting chorioretinal diseases, but its invasive nature and potential risks impede its routine clinical application. Here, we innovatively developed a deep-learning model capable of generating realistic ICGA images from color fundus photography (CF) using generative adversarial networks (GANs) and evaluated its performance in AMD classification. The model was developed with 99,002 CF-ICGA pairs from a tertiary center. The quality of the generated ICGA images underwent objective evaluation using mean absolute error (MAE), peak signal-to-noise ratio (PSNR), structural similarity measures (SSIM), etc., and subjective evaluation by two experienced ophthalmologists. The model generated realistic early, mid and late-phase ICGA images, with SSIM spanned from 0.57 to 0.65. The subjective quality scores ranged from 1.46 to 2.74 on the five-point scale (1 refers to the real ICGA image quality, Kappa 0.79–0.84). Moreover, we assessed the application of translated ICGA images in AMD screening on an external dataset (n = 13887) by calculating area under the ROC curve (AUC) in classifying AMD. Combining generated ICGA with real CF images improved the accuracy of AMD classification with AUC increased from 0.93 to 0.97 (P