학술논문

Life Cycle Assessment of Production of Hydrochar via Hydrothermal Carbonization of Date Palm Fronds Biomass
Document Type
article
Source
Materials, Vol 16, Iss 20, p 6653 (2023)
Subject
life cycle assessment
hydrothermal carbonization
date palm
biomass
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
1996-1944
Abstract
This study presents novel life cycle assessment (LCA) findings on hydrochar production from Saudi-Arabia-based date palm fronds biomass waste using hydrothermal carbonization (HTC). The LCA procedure incorporated normalization, weighting, and improvement assessment. The system boundary encompassed water consumption and energy requirements within a lab setting representing a gate-to-gate process. The OpenLCA 1.11.0 software with the European Life Cycle Database 3.2 (ELCD 3.2) was utilized for the study and we employed the ReCiPe Midpoint (H) 2016 and Environmental Footprint 3.0 (EF 3.0) impact assessment methods. The results indicated that fossil fuel usage represented the most significant impact category with the HTC and drying processes identified as major contributors. It was also observed that the HTC process exerted far greater detrimental impacts on the environment than the biomass grinding process. The overwhelming impact of fossil fuel resources could be mitigated by optimizing the batches of biomass or hydrochar samples in each operation, which could alleviate fossil fuel consumption by up to 94%. The findings emphasize the need for targeted interventions to mitigate the environmental burden and contribute to sustainable hydrochar production.