학술논문

Determining Aquifer Hydrogeological Parameters in Coastal Aquifers from Tidal Attenuation Analysis, Case Study: The Malta Mean Sea Level Aquifer System
Document Type
article
Source
Water, Vol 15, Iss 177, p 177 (2023)
Subject
hydrogeological parameters
transmissivity
carbonate aquifer
tidal attenuation method
geostatistics
Hydraulic engineering
TC1-978
Water supply for domestic and industrial purposes
TD201-500
Language
English
ISSN
2073-4441
Abstract
The coastal and carbonate Mean Sea Level Aquifer (MSLA) of Malta is characterised by high anisotropy and heterogeneity, which together make evaluating the aquifer system parameters a challenging task. In this paper, we present an approach for the determination of the hydrogeological parameters of this coastal aquifer based on tidal-induced groundwater fluctuations that can be applied in other similar contexts. This work presents an analysis of data undertaken on monitoring boreholes located in the Malta MSLA exhibiting tidal-induced groundwater fluctuations. This allowed us to determine the values of three main hydrogeological parameters: hydraulic diffusivity, transmissivity and hydraulic conductivity. These will subsequently be used as an input for groundwater flow and reactive transport modelling purposes. In this study, a methodology based on the fast Fourier transform (FFT) is proposed to improve the applicability of the Jacob–Ferris method to the observed groundwater level and sea level fluctuations. The FFT reproduced signals allowed us to isolate the component induced by sea tides, thus eliminating short- and long-term variations of the water table induced by other disruptive factors. Results showed high variability of hydrogeological parameters within a short distance, reflecting the high anisotropy and heterogeneity of the aquifer system. The transmissivity values derived from the Jacob–Ferris method are complemented with results derived from the pumping tests with the aim of estimating the spatial distribution of the aquifer transmissivity for the study area. The spatial variability of transmissivity values is analysed by means of geostatistics tools for estimating uncertainty, correlation and variation in space through the use of semi-variograms.