학술논문

Suppression of Penning discharges between the KATRIN spectrometers
Document Type
article
Author
M. AkerK. AltenmüllerA. BeglarianJ. BehrensA. BerlevU. BessererK. BlaumF. BlockS. BobienB. BornscheinL. BornscheinH. BouquetT. BrunstT. S. CaldwellS. ChilingaryanW. ChoiK. DebowskiM. DeffertM. DescherD. Díaz BarreroP. J. DoeO. DragounG. DrexlinS. DybaK. EitelE. EllingerR. EngelS. EnomotoD. EversheimM. FedkevychA. FeldenJ. A. FormaggioF. FränkleG. B. FranklinH. FrankroneF. FriedelA. FulstK. GaudaW. GilF. GlückS. GrohmannR. GrössleR. GumbsheimerM. HackenjosV. HannenJ. HartmannN. HaußmannF. HeizmannJ. HeizmannK. HelbingS. HickfordD. HillesheimerD. HinzT. HöhnB. HolzapfelS. HolzmannT. HoudyA. JansenC. KarlJ. KellererN. KernertL. KippenbrockM. KleinC. KöhlerL. KöllenbergerA. KopmannM. KorzeczekA. KovalíkB. KraschH. KrauseB. KuffnerN. KunkaT. LasserreL. La CascioO. LebedaB. LehnertJ. LetnevF. LevenT. L. LeS. LichterA. LokhovM. MachatschekE. MalcherekA. MarstellerE. L. MartinC. MelzerA. MenshikovS. MertensS. MirzB. MonrealK. MüllerU. NaumannH. NeumannS. NiemesM. NoeH.-W. OrtjohannA. OsipowiczE. OttenD. S. ParnoA. PollithyA. W. P. PoonJ. M. L. PoyatoF. PriesterP. C.-O. RanitzschO. RestR. RinderspacherR. G. H. RobertsonC. RodenbeckP. RohrM. RölligC. RötteleM. RyšavýR. SackA. SaenzP. SchäferL. SchimpfK. SchlösserM. SchlösserL. SchlüterM. SchrankB. SchulzH. Seitz-MoskaliukW. SellerV. SibilleD. SiegmannM. SlezákF. SpanierM. SteidlM. StevenM. SturmM. SuesserM. SunD. TcherniakhovskiH. H. TelleL. A. ThorneT. ThümmlerN. TitovI. TkachevN. TrostK. ValeriusD. VénosR. ViandenA. P. Vizcaya HernándezM. WeberC. WeinheimerC. WeissS. WelteJ. WendelJ. F. WilkersonJ. WolfS. WüstlingW. XuY.-R. YenS. ZadoroghnyG. Zeller
Source
European Physical Journal C: Particles and Fields, Vol 80, Iss 9, Pp 1-12 (2020)
Subject
Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1434-6044
1434-6052
Abstract
Abstract The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c $$^2$$ 2 by precisely measuring the endpoint region of the tritium $$\beta $$ β -decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.