학술논문

Development of $$^{100}\hbox {Mo}$$ 100 Mo -containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search
Document Type
article
Source
European Physical Journal C: Particles and Fields, Vol 77, Iss 11, Pp 1-25 (2017)
Subject
Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1434-6044
1434-6052
Abstract
Abstract This paper reports on the development of a technology involving $$^{100}\hbox {Mo}$$ 100 Mo -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ( $$\sim 1~\hbox {kg}$$ ∼ 1 kg ), high optical quality, radiopure $$^{100}\hbox {Mo}$$ 100 Mo -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2–0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of $$^{100}\hbox {Mo}$$ 100 Mo (3034 keV) is 4–6 keV FWHM. The rejection of the $$\alpha $$ α -induced dominant background above 2.6 MeV is better than $$8\sigma $$ 8 σ . Less than $$10~\upmu \hbox {Bq/kg}$$ 10 μ Bq/kg activity of $$^{232}\hbox {Th}\, (^{228}\hbox {Th})$$ 232 Th ( 228 Th ) and $$^{226}\hbox {Ra}$$ 226 Ra in the crystals is ensured by boule recrystallization. The potential of $$^{100}\hbox {Mo}$$ 100 Mo -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only $$10~\hbox {kg}\times \hbox {d}$$ 10 kg × d exposure: the two neutrino double-beta decay half-life of $$^{100}\hbox {Mo}$$ 100 Mo has been measured with the up-to-date highest accuracy as $$T_{1/2}$$ T 1 / 2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] $$\times ~10^{18}~\hbox {years}$$ × 10 18 years . Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of $$^{100}\hbox {Mo}$$ 100 Mo .