학술논문

Synthesis of indole-based oxadiazoles and their interaction with bacterial peptidoglycan and SARS-CoV-2 main protease: In vitro, molecular docking and in silico ADME/Tox study
Document Type
article
Source
Journal of Saudi Chemical Society, Vol 26, Iss 3, Pp 101474- (2022)
Subject
Indole
Oxadiazole
Main protease
Peptidoglycan
Multidrug resistant
Antibiofilm
Chemistry
QD1-999
Language
English
ISSN
1319-6103
Abstract
In the present study, Indole-based-oxadiazole (1A-17A) compounds were successfully synthesized. The structures of all synthesized compounds were fully characterized by different sophisticated spectroscopic techniques such 1H NMR, 13C NMR, and HREI-MS. Further, the synthesized compounds were explored to investigate their broad-spectrum antibacterial and antibiofilm potential against multidrug resistant Pseudomonas aeruginosa (MDR-PA) and methicillin resistant Staphylococcus aureus (MRSA). The compounds possessed a broad spectrum of antibacterial activity having MIC values of values 1–8 mg/ml against the tested microorganisms. Compound A6 and A7 shows maximum antibacterial activity against MDR-PA, whereas A6, A7 and A11 shows highest activity against MRSA. Furthermore, antibiofilm assay shows that A6, A7 and A11 showed maximum inhibition of biofilm formation and it was found that at 4 mg/ml; A6, A7 and A11 inhibit MRSA biofilm formation by 81.1, 77.5 and 75.9%, respectively; whereas in case of P. aeruginosa; A6 and A7 showed maximum biofilm inhibition and inhibit biofilm formation by 81.5 and 73.7%, respectively. Molecular docking study showed that compounds A6, A7, A8, A10, and A11 had high binding affinity to bacterial peptidoglycan, indicating their potential inhibitory activity against tested bacteria, whereas A6 and A11 were found to be the most effective inhibitors of SARS CoV-2 main protease (3CLpro), with a binding affinity of − 7.78 kcal/mol. Furthermore, SwissADME and pkCSM-pharmacokinetics online tools was applied to calculate the ADME/Tox profile of the synthesized compounds and the toxicity of these chemicals was found to be low. The Lipinski, Veber, Ghose, and Consensus LogP criteria were also used to predict drug-likeness levels of the compounds. Our findings imply that the synthesized compounds could be a useful for the preventing and treating biofilm-related microbial infection as well as SARS-CoV2 infections.