학술논문

Amyloid-Beta Peptides Trigger Premature Functional and Gene Expression Alterations in Human-Induced Neurons
Document Type
article
Source
Biomedicines, Vol 11, Iss 9, p 2564 (2023)
Subject
amyloid-beta peptides
human-induced neurons
single-nucleus RNA sequencing
calcium imaging
inter-cellular communication
Biology (General)
QH301-705.5
Language
English
ISSN
11092564
2227-9059
Abstract
Alzheimer’s disease (AD) is the most prevalent cause of dementia in the elderly, characterized by the presence of amyloid-beta (Aβ) plaques, neurofibrillary tangles, neuroinflammation, synapse loss and neurodegeneration in the brain. The amyloid cascade hypothesis postulates that deposition of Aβ peptides is the causative agent of AD pathology, but we still lack comprehensive understanding of the molecular mechanisms connecting Aβ peptides to neuronal dysfunctions in AD. In this work, we investigate the early effects of Aβ peptide accumulation on the functional properties and gene expression profiles of human-induced neurons (hiNs). We show that hiNs acutely exposed to low concentrations of both cell-secreted Aβ peptides or synthetic Aβ1–42 exhibit alterations in the frequency of calcium transients suggestive of increased neuronal excitability. Using single-cell RNA sequencing, we also show that cell-secreted Aβ up-regulates the expression of several synapse-related genes and down-regulates the expression of genes associated with metabolic stress mainly in glutamatergic neurons and, to a lesser degree, in GABAergic neurons and astrocytes. These neuronal alterations correlate with activation of the SEMA5, EPHA and NECTIN signaling pathways, which are important regulators of synaptic plasticity. Altogether, our findings indicate that slight elevations in Aβ concentrations are sufficient to elicit transcriptional changes in human neurons, which can contribute to early alterations in neural network activity.