학술논문

Critical View on Buffer Layer Formation and Monolayer Graphene Properties in High-Temperature Sublimation
Document Type
article
Source
Applied Sciences, Vol 11, Iss 4, p 1891 (2021)
Subject
epitaxial graphene on SiC
buffer layer
quasi-free-standing graphene
monolayer graphene
high-temperature sublimation
terahertz optical Hall effect
Technology
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
2076-3417
Abstract
In this work we have critically reviewed the processes in high-temperature sublimation growth of graphene in Ar atmosphere using closed graphite crucible. Special focus is put on buffer layer formation and free charge carrier properties of monolayer graphene and quasi-freestanding monolayer graphene on 4H–SiC. We show that by introducing Ar at higher temperatures, TAr, one can shift the formation of the buffer layer to higher temperatures for both n-type and semi-insulating substrates. A scenario explaining the observed suppressed formation of buffer layer at higher TAr is proposed and discussed. Increased TAr is also shown to reduce the sp3 hybridization content and defect densities in the buffer layer on n-type conductive substrates. Growth on semi-insulating substrates results in ordered buffer layer with significantly improved structural properties, for which TAr plays only a minor role. The free charge density and mobility parameters of monolayer graphene and quasi-freestanding monolayer graphene with different TAr and different environmental treatment conditions are determined by contactless terahertz optical Hall effect. An efficient annealing of donors on and near the SiC surface is suggested to take place for intrinsic monolayer graphene grown at 2000 ∘C, and which is found to be independent of TAr. Higher TAr leads to higher free charge carrier mobility parameters in both intrinsically n-type and ambient p-type doped monolayer graphene. TAr is also found to have a profound effect on the free hole parameters of quasi-freestanding monolayer graphene. These findings are discussed in view of interface and buffer layer properties in order to construct a comprehensive picture of high-temperature sublimation growth and provide guidance for growth parameters optimization depending on the targeted graphene application.