학술논문

Encoding the Sequence of Specific Autoantibodies Against beta-Amyloid and alpha-Synuclein in Neurodegenerative Diseases
Document Type
article
Source
Frontiers in Immunology, Vol 10 (2019)
Subject
B1 cell
naturally occurring autoantibodies
Alzheimer's disease
Parkinson's disease
single-cell RT-PCR
passive immunization strategy
Immunologic diseases. Allergy
RC581-607
Language
English
ISSN
1664-3224
Abstract
There is no effective disease-modifying therapy for Alzheimer's or Parkinson's disease. As pathological hallmarks, the specific peptide amyloid-β and the specific protein α-Synuclein aggregate and deposit in and destabilize neurons, which lead to their degeneration. Within the context of a potential immunization strategy for these diseases, naturally occurring autoantibodies could play a crucial role in treatment due to their ability to inhibit peptide/protein aggregation and mediate their phagocytosis. We developed a procedure to extract the genetic information of such amyloid-β- and α-Synuclein- specific naturally occurring autoantibodies for future passive immunization strategies. We performed FACS-based single-cell sorting on whole blood donated from healthy individuals and performed single-cell RT-PCR analysis to amplify the coding sequences of antigen-binding regions of each antibody-secreting B1 cell. Sequences were further analyzed to determine CDR sequences and germline expression. Therefore, only low percentages of B1 cells obtained were amyloid-β+/α-Synuclein+. After cell sorting, the variable regions of full IgGs were sequenced, demonstrating preferred usage of IGVH3 and IGKV1. The study we present herein describes an approaching for extracting and amplifying the sequence information of autoantibodies based on single-cell analysis of donated blood and producing a recombinant antibody pool for potential passive immunization against neurodegenerative diseases. We sorted a small pool of CD20+ CD27+ CD43+ CD69− IgG+ and Aβ+/α-Syn+ B cells.