학술논문

Remodeling of the maternal gut microbiome during pregnancy is shaped by parity
Document Type
article
Source
Microbiome, Vol 9, Iss 1, Pp 1-15 (2021)
Subject
Pig
Pregnancy
Parity
Gut microbiome
Neonate microbiome
Early-life microbiota
Microbial ecology
QR100-130
Language
English
ISSN
2049-2618
Abstract
Abstract Background The maternal microbiome has emerged as an important factor in gestational health and outcome and is associated with risk of preterm birth and offspring morbidity. Epidemiological evidence also points to successive pregnancies—referred to as maternal parity—as a risk factor for preterm birth, infant mortality, and impaired neonatal growth. Despite the fact that both the maternal microbiome and parity are linked to maternal-infant health, the impact of parity on the microbiome remains largely unexplored, in part due to the challenges of studying parity in humans. Results Using synchronized pregnancies and dense longitudinal monitoring of the microbiome in pigs, we describe a microbiome trajectory during pregnancy and determine the extent to which parity modulates this trajectory. We show that the microbiome changes reproducibly during gestation and that this remodeling occurs more rapidly as parity increases. At the time of parturition, parity was linked to the relative abundance of several bacterial species, including Treponema bryantii, Lactobacillus amylovorus, and Lactobacillus reuteri. Strain tracking carried out in 18 maternal-offspring “quadrads”—each consisting of one mother sow and three piglets—linked maternal parity to altered levels of Akkermansia muciniphila, Prevotella stercorea, and Campylobacter coli in the infant gut 10 days after birth. Conclusions Collectively, these results identify parity as an important environmental factor that modulates the gut microbiome during pregnancy and highlight the utility of a swine model for investigating the microbiome in maternal-infant health. In addition, our data show that the impact of parity extends beyond the mother and is associated with alterations in the community of bacteria that colonize the offspring gut early in life. The bacterial species we identified as parity-associated in the mother and offspring have been shown to influence host metabolism in other systems, raising the possibility that such changes may influence host nutrient acquisition or utilization. These findings, taken together with our observation that even subtle differences in parity are associated with microbiome changes, underscore the importance of considering parity in the design and analysis of human microbiome studies during pregnancy and in infants. Video abstract