학술논문

Intelligent Position Control for Intelligent Pneumatic Actuator with Ball-Beam (IPABB) System
Document Type
article
Source
Applied Sciences, Vol 12, Iss 21, p 11089 (2022)
Subject
intelligent pneumatic actuator
system identification technique
cascade fractional-order proportional–integral–derivative
particle swarm optimization
ball-beam system
Technology
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
2076-3417
Abstract
A pneumatic actuator system is considered extremely nonlinear, making accurate position control of this actuator difficult to obtain. In this article, a novel cascade fractional-order PID (CFOPID) controller for the intelligent pneumatic actuator (IPA) positioning system utilizing particle swarm optimization (PSO) is presented. The pneumatic system was modeled using the system identification (SI) technique. To demonstrate the effectiveness of the CFOPID controller, a comparison to the FOPID controller is performed based on the rise, settling, and peak times, peak overshoot, and integral of square error (ISE). From the results obtained, the proposed CFOPID controller provides superior control over the FOPID controller. For the application of the position controller, the proposed system incorporates an intelligent pneumatic actuated ball and beam (IPABB) system. The mathematical model of the system was developed and validated through a simulation utilizing a PID (outer loop) and CFOPID controller (inner loop). The suggested controller’s accuracy and robustness have been studied by a comparative examination of the results obtained utilizing the proposed and other prior controllers on the same system. The results indicate that the intelligent pneumatic actuator, when coupled with a CFOPID controller, is capable of controlling the positioning of the ball and beam system.