학술논문

4 Advances in fabrication, development, and characterization of synthetic nanomaterials
Document Type
Book
Source
Nanocomposite and Nanohybrid Materials: Processing and Applications. 17:85-98
Subject
Language
Abstract
Synthetic nanomaterials have developed into an incredible class of materials science, which consists of broad spectrum of materials in the range of 1-100 nm with at least one-dimensional structure. Nanomaterials can be fabricated by a bottom-up approach or a top-down approach with marvelous properties that are different from their counterparts. Their properties can be modulated by controlling the shape, size, structure, synthesis methods, monodispersity, and functionalization. They can be used in several research fields such as engineering, medical, environmental and agriculture because of their unique bio-physio-chemical properties. Analysis of synthetic nanomaterials have been characterized by X-ray diffraction analysis, scanning electron microscopic (SEM) technique, transmission electron microscopy (TEM) methods and UV-vis to determine their lattice pattern, morphology, dispersion, surface plasmon resonance. Further, the Fourier transform infrared (FTIR) spectroscopy analysis confirmed the binding of functional groups and the magnetic properties, which has been illustrated by the vibrating sample magnetometer (VSM) analysis that indicates synthesized materials have a saturation magnetization and coactivity. This chapter aims to illustrate the advancement in fabrication, development, and numerous characterizations of synthetic nanomaterials, which determine the features, functionalization, and their sector- specific applications in different fields of nanotechnology.

Online Access