학술논문

Prognostic value of involved/uninvolved free light chain ratio determined by Freelite and N Latex FLC assays for identification of high-risk smoldering myeloma patients
Document Type
research-article
Source
Clinical Chemistry and Laboratory Medicine (CCLM). 57(9):1397-1405
Subject
free light chains
high-risk
myeloma
smoldering multiple myeloma
Cancer Diagnostics
Language
English
ISSN
1437-4331
1434-6621
Abstract
BackgroundSmoldering multiple myeloma (SMM) is an asymptomatic plasma cell disorder with a high risk of progression to symptomatic multiple myeloma (MM). The serum free light chain (sFLC) ratio is a powerful prognostic factor for SMM: an sFLC ratio ≥8 has been reported to be associated with a high risk of progression to MM, and an sFLC ratio ≥100 has been described as a criterion for ultra-high-risk SMM, and has been integrated into the definition criteria for MM since 2014. However, all recommendations were based on sFLC measured using the first commercialized assay, Freelite™, while other assays are now available. We aimed to evaluate the safety and accuracy of N-Latex sFLC to identify high-risk and ultra-high-risk SMM.MethodsThe sFLC ratio was measured at diagnosis with both Freelite and N-Latex assays in a cohort of 176 SMM patients on a BN Prospec nephelometer. Demographic, clinical, therapeutic and laboratory data were collected at the time of diagnosis and at follow-up.ResultsSixty-two patients (35.2%) progressed to MM within 2 years. Compared to Freelite™ sFLC, N Latex sFLC ratios ≥8 and ≥100 provided similar performances for the identification of high-risk and ultra-high risk SMM patients.ConclusionsOur results evidenced that the N-Latex assay could be used for SMM monitoring, like Freelite. However, an N-Latex sFLC ratio ≥70 appears to provide similar performances to a Freelite sFLC ratio ≥100, with a slightly better positive predictive value. Both assays provided accurate identification of high-risk and ultra-high risk SMM patients. These results should be confirmed in an independent study.