학술논문

Li1.4Al0.4Ti1.6(PO4)3修饰富锂锰基Li1.2Ni0.13Co0.13Mn0.54O2锂离子电池正极材料 / Li1.4Al0.4Ti1.6(PO4)3 coated Li1.2Ni0.13Co0.13Mn0.54O2 for enhancing electrochemical performance of lithium-ion batteries
Document Type
Academic Journal
Source
中南大学学报(英文版) / Journal of Central South University. 29(5):1463-1478
Subject
表面包覆
富锂正极材料
电化学性能
Li1.4Al0.4Ti1.6(PO4)3
Li1.2Ni0.13Co0.13Mn0.54O2
锂离子电池
surface modification
Li-rich cathode material
electrochemical performance
Li-ion batteries
Language
Chinese
ISSN
2095-2899
Abstract
富锂锰基材料Li1.2Ni0.13Co0.13Mn0.54O2(LRNCM)以其优异的放电比容量和低廉的成本成为锂离子电池正极材料的研究热点.然而,富锂锰基材料存在循环性能和倍率性能差的不足,限制了其商业化的应用.快离子导体因其具有较好的稳定性和较高的锂离子传导速率等特点,被广泛用于正极材料的包覆研究.本研究采用溶胶凝胶法合成了Li1.4Al0.4Ti1.6(PO4)3(LATP)快离子导体,并对Li1.2Ni0.13Co0.13Mn0.54O2正极材料颗粒表面进行包覆改性.电化学测试结果表明,LRNCM@LATP1样品在0.2C条件下循环100次仍有198 mA·h/g的放电比容量,容量保持率达到81%,相较未包覆的P-LRNCM(放电比容量188.4 mA·h/g,容量保持率76%)表现出更优异的循环性能.离子扩散速率(DLi+)是影响材料倍率性能的重要因素,包覆1%LATP的LRNCM材料(LRNCM@LATP1)在100次循环后,DLi+从包覆前的4.94×10-13 cm2/s提高到包覆后的5.68×10-12 cm2/s,材料界面的离子传输能力得到了改善,LRNCM@LATP1在5C放电条件下的比容量可以达到102.5 mA·h/g,高倍率性能得到提升.因而,LATP的包覆改性可有效提高Li1.2Ni0.13Co0.13Mn0.54O2的电化学性能,对锂离子正极材料的研究具有重要的意义.
Lithium (Li)-rich manganese (Mn)-based cathode Li1.2Ni0.13Co0.13Mn0.54O2 (LRNCM) has attracted considerable attention owing to its high specific discharge capacity and low cost. However, unsatisfactory cycle performance and poor rate property hinder its large-scale application. The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate. In this study, Li1.2Ni0.13Co0.13Mn0.54O2 is modified by using Li1.4Al0.4Ti1.6(PO4)3 (LATP) ionic conductor. The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C, with a capacity retention of 81%. Compared with the uncoated pristine LRNCM (188.4 mA·h/g and 76%), LRNCM after the LATP modification shows superior cycle performance. Moreover, the lithium-ion diffusion coefficient DLi+ is a crucial factor affecting the rate performance, and the DLi+ of the LRNCM material is improved from 4.94×10-13 to 5.68×10-12 cm2/s after modification. The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C, with an improved rate performance. Thus, the modification layer can considerably enhance the electrochemical performance of LRNCM.