학술논문

Temporal join processing with hilbert curve space mapping
Document Type
Conference
Source
Proceedings of the 29th Annual ACM Symposium on Applied Computing. :839-844
Subject
hilbert curve
index
join
query
temporal
Language
English
Abstract
Management of data with a time dimension increases the overhead of storage and query processing in large database applications especially with the join operation, which is a commonly used and expensive relational operator. The join evaluation is difficult because temporal data are intrinsically multidimensional. The problem is harder since tuples with longer life spans tend to overlap a greater number of joining tuples thus; they are likely to be accessed more often. The proposed index-based Hilbert-Temporal Join (Hilbert-TJ) join algorithm maps temporal data into Hilbert curve space that is inherently clustered, thus allowing for fast retrieval and storage. An evaluation and comparison study of the proposed Hilbert-TJ algorithm determined the relative performance with respect to a nested-loop join, a sort-merge, and a partition-based join algorithm that use a multiversion B+ tree (MVBT) index. The metrics include the processing time (disk I/O time plus CPU time) and index storage size. Under the given conditions, the expected outcome was that by reducing index redundancy better performance was achieved. Additionally, the Hilbert-TJ algorithm offers support to both valid-time and transaction-time data.

Online Access